In this volume, concepts of nonlinear dynamics and self-organization are applied to topics in materials sciences with emphasis on semiconductors, soft matter, and biomaterials. The questions addressed include how to compare ordering phenomena under nonequilibrium situations, usually called self-organized structures, with those arising under situations close to equilibrium via selfassembly. Analogies are pointed out, differences are characterized, and efforts made to discover common features in the mechanistic description of those phenomena. Of major importance is the question of the role of spatial and temporal order, in particular, the application of concepts developed on macroscopic and microscopic scales to structure formation occurring on nanoscales, which occupies the focus of interest on the frontiers of science.

Read more
The questions addressed include how to compare ordering phenomena under nonequilibrium situations, usually called self-organized structures, with those arising under situations close to equilibrium via selfassembly.
Read more
Organic Crystalline Nanofibers.- Titanium-Based Molecular Architectures Formed by Self-Assembled Reactions.- Self-Assemblies of Organic and Inorganic Materials.- Self-Assembled Nanoparticle Rings.- Patterns of Nanodroplets: The Belousov-Zhabotinsky-Aerosol OT-Microemulsion System.- Honeycomb Carbon Networks: Preparation, Structure, and Transport.- Chemical Waves in Living Cells.
Read more

In this volume, concepts of nonlinear dynamics and self-organization are applied to topics in materials sciences with emphasis on semiconductors, soft matter, and biomaterials. The questions addressed include how to compare ordering phenomena under nonequilibrium situations, usually called self-organized structures, with those arising under situations close to equilibrium via selfassembly. Analogies are pointed out, differences are characterized, and efforts made to discover common features in the mechanistic description of those phenomena. Of major importance is the question of the role of spatial and temporal order, in particular, the application of concepts developed on macroscopic and microscopic scales to structure formation occurring on nanoscales, which occupies the focus of interest on the frontiers of science.

Read more
Comprehensive presentation of self-organized structure formation in nanomaterials Integrates nano- and microphysical effects in a unique way Valuable reference work for researchers Explains the basics to graduate students Includes supplementary material: sn.pub/extras
Read more
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Read more

Product details

ISBN
9783642091711
Published
2010-11-23
Publisher
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Height
235 mm
Width
155 mm
Age
Research, P, 06
Language
Product language
Engelsk
Format
Product format
Heftet