"Fundamentals of Solid State Engineering, 2nd Edition", provides a multi-disciplinary introduction to Solid State Engineering, combining concepts from physics, chemistry, electrical engineering, materials science and mechanical engineering. Basic physics concepts are introduced, followed by a thorough treatment of the technology for solid state engineering. Topics include compound semiconductor bulk and epitaxial thin films growth techniques, current semiconductor device processing and nano-fabrication technologies. Examples of semiconductor devices and a description of their theory of operation are then discussed, including transistors, semiconductor lasers and photodetectors. Revised throughout, this second edition includes new chapters on the reciprocal lattice, optical properties of semiconductors, semiconductor heterostructures, semiconductor characterization techniques, and an introduction to lasers. Additions and improvements have been made to the material on photodetectors and quantum mechanics as well as to the problem sections.
Les mer
Provides a multidisciplinary introduction to quantum mechanics, solid state physics, advanced devices, and fabrication. This book covers topics: compound semiconductor bulk and epitaxial thin films growth techniques, semiconductor device processing and nano-fabrication technologies. It includes study problems and examples of semiconductor devices.
Les mer
Crystalline Properties of Solids.- Introduction.- Crystal lattices and the seven crystal systems .- The unit cell concept.- Bravais lattices .- Point groups.- Space groups.- Directions and planes in crystals: Miller indices.- Real crystal structures.- Summary.- Further reading.- Problems.- The Reciprocal Lattice.- Introduction.- Diffraction by a crystal.- Structure factor.- Atomic form factor.- First Brillouin zone.- Summary.- References.- Further reading.- Problems.- Electronic Structure of Atoms.- Introduction.- Spectroscopic emission lines and atomic structure of hydrogen.- Atomic orbitals.- Structures of atoms with many electrons.- Bonds in solids.- Introduction to energy bands.- Summary.- Further reading.- Problems.- Introduction to Quantum Mechanics.- The quantum concepts.- Elements of quantum mechanics.- Simple quantum mechanical systems.- Summary.- Further reading.- Problems.- Electrons and Energy Band Structures in Crystals.- Introduction.- Electrons in a crystal.- Band structures in real semiconductors.- Band structures in metals.- Summary.- References.- Further reading.- Problems.- Phonons.- Introduction.- Interaction of atoms in crystals: origin and formalism.- One-dimensional monoatomic harmonic crystal.- Sound velocity.- One-dimensional diatomic harmonic crystal.- Phonons.- Summary.- Further reading.- Problems.- Thermal Properties of Crystals.- Introduction.- Phonon density of states (Debye model).- Heat capacity.- Thermal expansion.- Summary.- References.- Further reading.- Problems.- Equilibrium Charge Carrier Statistics in Semiconductors.- Introduction.- Density of states.- Effective density of states (conduction band).- Effective density of states (valence band).- Mass action law.- Doping: intrinsic vs. extrinsic semiconductor.- Charge neutrality.- Fermi energy as a function of temperature.- Carrier concentration in a semiconductor.- Summary.- Further reading.- Problems.- Non-Equilibrium Electrical Properties of Semiconductors.- Introduction.- Electrical conductivity.- Doping.- Charge carrier diffusion.- Carrier generation and recombination mechanisms.- Summary.- Further reading.- Problems.- Semiconductor Junctions.- Introduction.- Ideal p-n junction at equilibrium.- Non-equilibrium properties of p-n junctions.- Deviations from the ideal p-n diode case.- Metal-semiconductor junctions.- Summary.- Further reading.- Problems.- Optical Properties of Semiconductors.- Introduction.- Electron-photon interaction.- The dielectric permitivity of a solid.- Excitons.- Phonon-photon interaction.- Plasmons.- Electro-optical properties.- Electrons in a magnetic field.- Nonlinear optical properties.- Optical properties of important semiconductors.- Summary.- References.- Further reading.- Problems.- Low Dimensional Quantum Structures.- Introduction.- two-dimensional structures: quantum wells.- One-dimensional structures: quantum wires.- Zero-dimensional structures: quantum dots.- Examples of low dimensional structures.- Optical properties of 3D, 2D, 1D and 0D structures.- Summary.- References.- Further reading.- Problems.- Semiconductor Heterostructures.- Introduction.- Energy band offsets.- Type I alignment.- Type II alignments.- Summary.- References.- Further reading.- Problems.- Compound Semiconductors and Crystal Growth Techniques.- Introduction.- III-V semiconductor alloys.- Bulk single crystal growth techniques.- Epitaxial growth techniques.- Summary.- References.- Further reading.- Problems.- Silicon and Compound Semiconductor Device Technology.- Introduction.- Oxidation in Silicon.- Diffusion of dopants.- Ion implantation of dopants.- Characterization of diffused and implanted layers.- Summary.- References.- Further reading.- Problems.- Semiconductor Characterization Techniques.- Introduction.- Structural characterization.- Optical characterization.- Electrical characterization.- Summary.- References.- Further reading.- Problems.- Semiconductor Device Processing.- Introduction .- Photolithography.- Electron-beam lithography.- Etching.- Metallization.- Packaging of devices.- Summary.- References.- Further reading.- Problems.- Transistors.- Introduction.- Overview of amplification and switching.- Bipolar junction transistors.- Heterojunction bipolar transistors.- Field effect transistors.- Summary.- References.- Problems.- Lasers - General Concepts.- Introduction.- Types of lasers.- General laser theory.- Ruby laser.- Summary.- References.- Further reading.- Problems.- Semiconductor Lasers.- Introduction.- Population inversion.- Threshold condition and output power.- Homojunction Laser.- Heterojunction lasers.- Device Fabrication.- Separate confinement and quantum well lasers.- Laser packaging.- Distributed feedback lasers.- Material choices for common interband lasers.- Quantum cascade lasers.- Type II lasers.- Vertical cavity surface emitting lasers.- Low dimensional lasers.- Summary.- References .- Further reading.- Problems.- Photodetectors - General Concepts.- Introduction.- Electromagnetic radiation.- Photodetector parameters.- Thermal detectors.- Summary.- References.- Further reading.- Problems.- Photon Detectors.- Introduction.- Types of photon detectors.- P-i-n photodiodes.- Avalanche photodiodes.- Schottky barrier photodiodes.- Metal-semiconductor-metal photodiodes.- Type II superlattice photodetectors.- Quantum well intersubband photodetectors.- Photo-electromagnetic detectors.- Summary.- References.- Further reading.- Problems.- Defects in Semiconductor Crystals.- Introduction.- Point defects.- Impurities.- Vacancies and substitutions.- Strain and stress.- Dislocations.- Stacking faults.- Summary.- References.- Further reading.- Problems.- Appendix.- The Kane model.- The Pseudopotential method.- Monte Carlo Methods
Les mer

Produktdetaljer

ISBN
9780387281520
Publisert
2006-03-21
Utgave
2. utgave
Utgiver
Vendor
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
06, P
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
914

Forfatter

Biographical note

Manijeh Razeghi is a Walter P. Murphy Professor of Electrical and Computer Engineering and Director of the Center for Quantum Devices at Northwestern University. She joined the ECE department in 1991. Prior to that, she was the Head of the Exploratory Materials Lab, Thomson-CSF, Orsay, France, from 1986-1991. She has authored 1000 papers, given more than 500 invited and plenary talks, written 12 book chapters, 8 books, and holds 50 patents. Dr. Razeghi is a Fellow of the International Engineering Consortium, a Life Member and Fellow of the Society of Women Engineers, and a Fellow of the Society of Photo-Optical Instrumentation Engineering, the Optical Society of America (OSA), and of the IEEE. She won the IBM Europe Science and Technology Prize, an Achievement Award from the Society of Women Engineers, and many Best Paper Awards. Manijeh Razeghi received her DEA in 1976, the Docteur 3eme Cycle in Solid State Physics in 1977, and the Docteur d'Etat des Sciences Physiques in 1980, all from the Universite de Paris Sud (11), France. Manijeh Razeghi is one of the leading researchers in the field of optoelectronics. Her areas of expertise are in the growth and characterization techniques for III-V and II-VI semiconductor heterojunction multiple quantum well devices and superlattices for photonic and electronic devices. She was responsible for the design and implementation of epitaxial growth techniques such as metalorganic chemical vapor deposition (MOCVD), VPE, MBE and metalorganic molecular beam epitaxy (MOMBE) as well as optical, electrical, and structural characterization of the semiconductor multilayers. She has developed a number of semiconductors, advanced photonic and electronic devices such as lasers, photodetectors, transistors and which are in turn used in fiber optics communication.