Providing an exhaustive review of this topic, Inorganic Mass Spectrometry: Principles and Applications provides details on all aspects of inorganic mass spectrometry, from a historical overview of the topic to the principles and functions of mass separation and ion detection systems. Offering a comprehensive treatment of inorganic mass spectrometry, topics covered include: Recent developments in instrumentationDeveloping analytical techniques for measurements of trace and ultratrace impurities in different materials This broad textbook in inorganic mass spectrometry, presents the most important mass spectrometric techniques used in all fields of analytical chemistry. By covering recent developments and advances in all fields of inorganic mass spectrometry, this text provides researchers and students with information to answer any questions on this topic as well as providing the basic fundamentals for understanding this potentially complex, but increasingly relevant subject.
Les mer
Providing an exhaustive review of this topic, Inorganic Mass Spectrometry: Principles and Applications provides details on all aspects of inorganic mass spectrometry, from a historical overview of the topic to the principles and functions of mass separation and ion detection systems.
Les mer
Foreword xiii Preface xvii Acknowledgements xix Introduction to Mass Spectrometry 1 1 History of Mass Spectrometric Techniques 7 References 22 2 Ion Sources 25 2.1 Inductively Coupled Plasma Ion Source 28 2.1.1 Laser Ablation Coupled to an Inductively Coupled Plasma Ion Source 38 2.1.2 Electrothermal Vaporization Coupled to an Inductively Coupled Plasma Ion Source 43 2.1.3 Hydride Generation and Cold Vapour Technique Coupled to an Inductively Coupled Plasma Source 43 2.2 Spark Ion Source 44 2.3 Laser Ion Source 46 2.3.1 Laser Plasma Ionization 46 2.3.2 Resonant Laser Ionization 50 2.4 Glow Discharge Ion Source 51 2.5 Thermal Surface Ionization Source 56 2.6 Ion Sources for Secondary Ion Mass Spectrometry (SIMS) and Sputtered Neutral Mass Spectrometry (SNMS) 60 2.7 Electron Ionization Source 65 2.8 Matrix Assisted Laser Desorption/Ionization Source 69 2.9 Electrospray Ionization Source 70 References 73 3 Ion Separation 77 3.1 Sector Field Analyzer 78 3.1.1 Magnetic Sector Field Analyzer 78 3.1.2 Electric Sector Field Analyzer 81 3.1.3 Combination of Magnetic and Electric Sector Fields – Double-focusing Sector Field Mass Spectrometer 83 3.2 Dynamic Mass Separation Systems 87 3.2.1 Quadrupole Mass Analyzer 87 3.2.2 Time-of-flight Analyzer 91 3.2.3 Ion Trap Mass Analyzer 94 3.2.4 Ion Cyclotron Resonance Mass Analyzer 95 3.3 Mass Resolution and Abundance Sensitivity 98 References 101 4 Ion Detection Systems 103 4.1 Faraday Cup 103 4.2 Secondary Electron Multiplier 105 4.3 Combination of Faraday Cup and Secondary Electron Multiplier 107 4.4 Channel Electron Multiplier and Microchannel Plates 108 4.5 Daly Detector 109 4.6 Multiple Ion Collection System 111 4.7 Fluorescence Screen and Photographic Ion Detection 113 References 114 5 Instrumentation 117 5.1 Inductively Coupled Plasma Mass Spectrometers (ICP-MS) 120 5.1.1 Quadrupole Based ICP Mass Spectrometers (ICP-QMS) 121 5.1.2 ICP Mass Spectrometers with Collision or Dynamic Reaction Cell or Collision Reaction Interface 123 5.1.3 Double-focusing Sector Field ICP Mass Spectrometers with Single Ion Collector (ICP-SFMS) 131 5.1.4 Time-of-flight Mass Spectrometers (ToF-MS) 133 5.1.5 Multiple Ion Collector ICP Mass Spectrometers (mc-icp-ms) 135 5.1.6 Solution Introduction Systems in ICP-MS 141 5.1.7 Hydride Generation and Cold Vapour Technique 146 5.1.8 Flow Injection and Hyphenated Techniques 147 5.1.9 Laser Ablation Inductively Coupled Plasma Mass Spectrometers (la-icp-ms) 150 5.2 Spark Source Mass Spectrometers (SSMS) 153 5.3 Laser Ionization Mass Spectrometers (LIMS) 154 5.4 Resonance Ionization Mass Spectrometers (RIMS) 155 5.5 Glow Discharge Mass Spectrometers (GDMS) 157 5.6 Thermal Ionization Mass Spectrometers (TIMS) 160 5.7 Secondary Ion Mass Spectrometers (SIMS) and Sputtered Neutral Mass Spectrometers (SNMS) 161 5.8 Accelerator Mass Spectrometers (AMS) 167 5.9 Electron Ionization Mass Spectrometers for Stable Isotope Ratio Measurements 169 5.10 Knudsen Effusion Mass Spectrometers 170 References 171 6 Analytical and Practical Considerations 177 6.1 Qualitative Analysis 177 6.1.1 Isotopic Pattern 178 6.1.2 Mass Determination 180 6.1.3 Interference Problems 180 6.2 Quantification Procedures 187 6.2.1 Semi-quantitative Analysis 188 6.2.2 One Point Calibration in Solid-state Mass Spectrometry Using a Certified Reference Material 189 6.2.3 Quantification of Analytical Data via Calibration Curves in Mass Spectrometry Using Certified Reference Materials or Defined Standard Solutions 193 6.2.4 Isotope Dilution Technique 196 6.2.5 Quantification in Solid-state Mass Spectrometry Using Synthetic Laboratory Standards 199 6.2.6 Solution Based Calibration in LA-ICP-MS 201 6.3 Sample Preparation and Pretreatment 208 6.3.1 Sample Preparation for Analysis of Solids 209 6.3.2 Sample Preparation for ICP-MS 209 6.3.3 Trace Matrix Separation and Preconcentration Steps 211 References 212 7 Mass Spectrometric Techniques for Analysis of Gaseous Materials and Volatile Compounds 215 7.1 Sampling and Sample Preparation of Gases and Volatile Compounds 215 7.2 Applications of Inorganic Mass Spectrometry for Analysis of Gases and Volatile Compounds 216 7.3 Stable Isotope Ratio Measurements of Gases and Volatile Compounds 220 References 221 8 Isotope Ratio Measurements and their Application 223 8.1 Capability of Inorganic Mass Spectrometry in Isotope Ratio Measurements 226 8.2 Limits for Precision and Accuracy of Isotope Ratio Measurements and How to Solve the Problems 228 8.3 Isotope Ratio Measurements by Gas Source Mass Spectrometry 232 8.4 Isotope Ratio Measurements by Quadrupole based ICP-MS 232 8.5 Isotope Ratio Measurements by Laser Ablation ICP-MS 234 8.6 Multiple Ion Collector Mass Spectrometry for High Precision Isotope Ratio Measurements 237 8.7 Applications of Isotope Dilution Mass Spectrometry 239 8.8 Isotope Ratio Measurement of Long-Lived Radionuclides 241 8.9 Applications of Isotope Ratio Measurements in Geochemistry and Geochronology 246 References 250 9 Fields of Application in Trace, Ultratrace and Surface Analysis 255 9.1 Materials Science 256 9.1.1 Trace and Ultratrace (Bulk) Analysis of Metals and Alloys 260 9.1.2 Semiconductors 268 9.1.3 Ceramics, Glasses, Polymers and Other Non-conductors 272 9.1.4 Thin and Thick Film Analysis 277 9.1.5 Analysis of Surface Contamination and of Process Chemicals Used in Semiconductor Technology 287 9.1.6 Microlocal Analysis in Materials Research 291 9.1.7 Imaging by Inorganic Mass Spectrometry in Materials Science 292 References I 293 9.2 Environmental Science and Environmental Control 298 9.2.1 Analysis of Water Samples 300 9.2.2 Analysis of Air Samples, Particles and Smoke 304 9.2.3 Multi-elemental Analysis of Environmental Samples for Environmental Control 306 9.2.4 Environmental Monitoring of Selected Elements, Group Elements and Trace Element Species 306 9.2.5 Isotope Ratio Measurements in Environmental Samples 308 9.2.6 Monitoring of Radionuclides in the Environment 311 References II 313 9.3 Biology 317 9.3.1 Analysis of Trace Elements in Biological Samples 318 9.3.2 Elemental Speciation in Biological Samples 322 9.3.3 Analysis of Phosphorus, Metals and Metalloids Bonded to Proteins 326 9.3.4 Isotope Ratio Measurements of Biological Systems 331 9.3.5 Trace and Imaging Analysis on Biological Tissues and Single Cells 333 References III 336 9.4 Bioengineering 338 9.4.1 Activities in Bioengineering and Analytics 339 9.4.2 Nanobiotechnology 340 References IV 343 9.5 Medicine 344 9.5.1 Sampling, Sample Handling and Storage of Medical Samples 344 9.5.2 Body Fluids 345 9.5.3 Hair, Nail, Tooth and Bone Analysis 349 9.5.4 Microanalysis of Small Amounts of Medical Samples 352 9.5.5 P, S, Se and Metal Determination in Proteins 353 9.5.6 Analysis of Tissues 362 9.5.7 Imaging Mass Spectrometry of Medical Tissues 366 9.5.8 Single Cell Analysis 372 9.5.9 Ultrafine Particles and Health 375 References V 375 9.6 Food Analysis 380 9.6.1 Determination of Trace Elements and Species in Foodstuffs 381 9.6.2 Analysis of Mineral and Bottled Water 385 9.6.3 Fingerprinting of Foods by Trace Analysis and Isotope Ratio Measurements 385 References VI 386 9.7 Geology and Geochemistry 388 9.7.1 Sample Preparation Techniques for Geological Samples 388 9.7.2 Fractionation Effects in LA-ICP-MS 390 9.7.3 Multi-element Analysis of Geological Samples 391 9.7.4 Trace Analysis of Selected Elements in Geological Materials 396 9.7.5 Isotope Analysis Including Age Determination of Minerals and Rocks by Mass Spectrometry 398 9.7.6 Mass Spectrometric Microlocal and Imaging Analysis of Geological Samples 407 References VII 407 9.8 Cosmochemistry, Planetary and Space Science 410 9.8.1 Cosmochemical Trace Analysis 410 9.8.2 Isotope Analysis in Cosmochemistry 412 9.8.3 Cosmogenic Radionuclides and Age Dating 413 References VIII 414 9.9 Determination of Long-lived Radionuclides 415 9.9.1 Determination of Half-life of Long-lived Radionuclides 418 9.9.2 Methodological Developments and Applications of ICP-MS for Determination of Long-lived Radionuclides Including Trace/Matrix Separation 419 9.9.3 Ultratrace Analysis of Long-lived Radionuclides in Very Small Sample Volumes 424 9.9.4 Determination of Long-lived Radionuclides by LA-ICP-MS and Etv-icp-ms 427 9.9.5 Particle Analysis by Inorganic Mass Spectrometry 430 References IX 431 9.10 Forensic Analysis 433 9.10.1 Fingerprinting in Forensic Studies 434 9.10.2 Multi-element Analysis for Forensic Studies 435 9.10.3 Trace Element Analysis of Selected Elements and Speciation 436 9.10.4 Nuclear Forensic Studies 437 9.10.5 Forensic Investigations by Isotope Ratio Measurements 438 References X 439 9.11 Study of Cluster and Polyatomic Ion Formation by Mass Spectrometry 440 9.11.1 Carbon and Boron Nitride Cluster Ion Formation 441 9.11.2 Formation of Selected Heteronuclear Cluster Ions 446 9.11.3 Clusters From Metal Oxide/Graphite Mixtures 446 9.11.4 Argon Diatomic Ions 450 9.11.5 Oxide Ion Formation of Long-lived Radionuclides in Icp-ms 453 References XI 455 9.12 Further Applications 456 9.12.1 Pharmaceutical Applications and Analysis of Drugs 457 9.12.2 Archaeology 457 References XII 458 10 Future Developments and Trends in Inorganic Mass Spectrometry 459 Appendices Appendix I 463 Appendix II 470 Appendix III 473 Appendix IV 478 Appendix V 481 Index 483
Les mer
In organic mass spectrometry provides established analytical techniques to analyze know and unknown materials in respect to their elemental composition or species, to quantify the elemental concentration of major, minor and trace elements in any samples for the determination of the exact mass of isotopes and precise and accurate isotopic abundances or isotope ratios. Beginning with a historical overview of mass spectrometry, Inorganic Mass Spectrometry: Principles and Applications presents the fundamentals and instrumentation of the most important inorganic mass spectrometric techniques, describes a wide range of analytical methods and a multitude of applications. This comprehensive work provides an insight into the state of the art of mass spectrometry in different challenging areas and recent developments and presents representative coverage of many topics. It is concerned with the most important types of mass spectrometers and presents an overview of new methodological developments and trends for analytical work and modern applications especially in survey, trace, ultratrace, surface (micro- and nanolocal analysis, imaging and depth profiling) and isotope analysis. The first part of the book descries fundamentals of inorganic mass spectrometry (basic principles and developments of ion sources, ion separation systems and ion detectors) and instrumental developments in ICP-MS, LA-ICP-MS, GDMS, SIMS, TIMS and other mass spectrometric techniques. The second part focuses on a multitude of quite different applications including: Materials science Environmental Science and environmental control Biology Bioengineering Medicine Food analysis Geology and geochemistry Cosmochemistry, planetary and space science Determination of long-lived radionuclides Forensic applications The study of cluster and polyatomic ion formation by mass spectrometry Extensive appendices include a table of isotopic abundances, atomic mass and ionization energies of elements; a table of atomic weights of elements; and a list of standard reference materials for isotope ratio measurements. Inorganic Mass Spectrometry, written by an author with extensive experience in research and teaching provides a balanced mixture of practice-oriented information and theoretical background that will prove useful to both new and established practitioners in this field.
Les mer
"This book fits very well into the curriculum for graduate courses in inorganic analysis and inorganic mass spectrometry … It is a pleasure to recommend this up-to-date and thorough book." (Angewandte Chemie International Edition, May 2008) "A volume that belongs on the shelf of every practicing mass spectrometrist and worthy of consideration for any graduate level course dealing with the subject … .It is far more coherent and cohesive than most other volumes that are merely edited collections of individually written chapters." (International Journal of Mass Spectrometry) "Standing ovations for this book! It is very homogenous, well written, excellently illustrated, and well rounded." (Analytical & Bioanalytical Chemistry, September 2008) This overview would benefit researchers in all of these fields…may provide them with some useful answers would be well advised to secure a copy of this text. (Journal of the American Chemical Society, July 2, 2008) "This book fits very well into the curriculum for graduate courses in inorganic analysis and inorganic mass spectrometry. It will also server as an easy-to-use and extremely valuable source of information for all practitioners in the board field of mass spectrometry. It is a pleasure to recommend this up-to-date and thorough book." (Angewandte Chemie, 2008-47/23)
Les mer

Produktdetaljer

ISBN
9780470012000
Publisert
2007-12-14
Utgiver
Vendor
Wiley-Interscience
Vekt
1247 gr
Høyde
252 mm
Bredde
178 mm
Dybde
31 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
520

Forfatter

Biographical note

Johanna Sabine Becker; Since 1997- Deputy Head of Central Department for Analytical Chemistry, Research Centre Jülich.