This book systematically investigates the Mars entry problem from the perspectives of deterministic optimization, uncertainty optimization, and guidance. Began with a detailed review of the robotic missions and human-scaled exploration plans to Mars, theories or concepts of optimal control, uncertainty quantification, robust optimization, model predictive control, sequential convex programming, and computational guidance are subsequently introduced. Correspondingly, this book presents a series of trajectory planning and guidance algorithms to improve the robustness, reliability, and safety of the Mars missions. Because the Mars entry problem is studied using advanced mathematics, including probability theory, optimization theory, and cybernetics, thus the book is primarily designed as a textbook for graduate students in aerospace engineering, aeronautics, and astronautics departments. Engineers and researchers may also use this book as a reference or tutorial to help with the modeling and simulation of the Mars entry problem due to its thorough simulations and analyses.
Fundamental Knowledge.- Introduction.- Preliminaries.- Deterministic Optimization.- Improved Gauss pseudospectral method for Mars entry trajectory planning.- Improved sequential convex optimization for Mars entry trajectory planning.- Pseudospectral model predictive convex programming for Mars entry trajectory planning.- Indirect sequential convex programming for Mars entry trajectory planning.- Mars entry and powered descent using collaborative optimization.- Uncertainty optimization.- Mars entry trajectory optimization with desensitized optimal control.- Uncertainty quantification for Mars entry.- Robust trajectory optimization for Mars entry.- Robust optimal guidance method.- Direct model reference adaptive tracking guidance for Mars entry.- Computational guidance method for Mars entry.
Produktdetaljer
Biografisk notat
Shuang Li received his B.S.E, M.S.E, and Ph.D. degrees all in the spacecraft design from the Department of Aerospace Engineering at Harbin Institute of Technology, China, in 2001, 2003, and 2007, respectively. Since 2007, he has been with the College of Astronautics, Nanjing University of Aeronautics and Astronautics, China, where he is a full professor and the founding director of Advanced Space Technology Laboratory (ASTL) now. His research interests include spacecraft guidance navigation and control (GNC), astrodynamics, and space mission design and analysis. He has been the author of over 120 articles in reputable journals and conference proceedings. He is an associate editor for Journal of Spacecraft and Rockets and Astrodynamics and an editorial board member of Space: Science & Technology, Chinese Space Science and Technology (in Chinese), Journal of NUAA (in Chinese), Journal of Deep Space Exploration (in Chinese), and Flight Control & Detection (in Chinese). He served for ActaAstronautica as a guest editor for a special issue (Fourth IAA Conference on Dynamics and Control of Space Systems) and a special section (Special Section on 9th China Trajectory Optimization Competition).Xu Liu received the B.S. and Ph.D. degrees in Guidance, Navigation, and Control from Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2017 and 2023, respectively. He is a Lecturer with the Department of Automation, Nanchang University, Nanchang, China. His research interests include the trajectory optimization, guidance, navigation, and control technologies of flight vehicles.