Lineare Algebra spielt in der mathematischen Modellierung und Bearbeitung von Anwendungsproblemen eine entscheidende Rolle. Das von erfahrenen Hochschullehrern verfasste Buch gibt eine verstandliche und systematische Einfuhrung in dieses Gebiet. Es wendet sich an alle Studierende an Universitaten und Fachhochschulen, fur die Mathematik ein wichtiges Grundlagenfach ist.
Les mer
1 Motivation.- 1.1 Proportionalität.- 1.2 Die Ableitung.- 1.3 Linearisierung.- 1.4 Produktionsmodelle.- 1.5 Zusammenfassung.- 2 Vektoren, Matrizen und lineare Gleichungssysteme.- 2.1 Vektor und Matrix.- 2.2 Rechenregeln für Matrizen und Vektoren.- 2.3 Besondere Typen von Vektoren und Matrizen.- 2.4 Lösung linearer Gleichungssysteme.- 3 Vektorräume und affine Räume.- 3.1 Der Begriff des Vektorraumes.- 3.2 Untervektorraum, Summe, Quotientenraum.- 3.3 Lineare Unabhängigkeit, Basis, Dimension.- 3.4 Affine Räume.- 4 Lineare Abbildungen und Matrizen.- 4.1 Grundlegende Begriffe und Eigenschaften.- 4.2 Dualer Raum, duale Abbildung.- 4.3 Matrixdarstellung linearer Abbildungen.- 4.4 Der Rang einer Matrix.- 4.5 Invertierbare Matrizen.- 4.6 Lineare Gleichungssysteme.- 4.7 Koordinatentransformation.- 5 Die Determinante.- 5.1 Der Flächeninhalt eines Parallelogramms.- 5.2 Definition der Determinante.- 5.3 Regeln für den Umgang mit der Determinante.- 5.4 Der Laplacesche Entwicklungssatz.- 5.5 Die Determinante eines Endomorphismus.- 6 Euklidische und unitäre Vektorräume.- 6.1 Länge und Winkel im ?2.- 6.2 Das Standardskalarprodukt im ?n.- 6.3 Euklidische Vektorräume.- 6.4 Unitäre Vektorräume.- 6.5 Orthogonalität.- 6.6 Orthogonale und unitäre Endomorphismen.- 6.7 Ein Trennungssatz und das Farkas—Lemma.- 7 Eigenwerte und Eigenvektoren.- 7.1 Aufgabenstellung und Begriffe.- 7.2 Eigenschaften und Berechnung von Eigenwerten und Eigenvektoren.- 7.3 Ähnlichkeitstransformation.- 7.4 Hauptachsentransformation quadratischer Formen.- 7.5 Extremaleigenschaft der Eigenwerte.- 8 Geometrie in euklidischen Vektorräumen.- 8.1 Darstellung affiner Unterräume.- 8.2 Abstand und Lage affiner Unterräume.- 8.3 Volumen von Parallelotopen.- 8.4 Das Vektorprodukt.- 8.5 Spiegelungen undDrehungen.- Bezeichnungen.
Les mer
Dieses Buch wendet sich besonders an Studierende der Ingenieur-, Natur- und Wirtschaftswissenschaften an Universitäten und Fachhochschulen. Behandelt werden Grundlagen und Anwendungen der linearen Algebra, wie sie in den Kursen des Grundstudiums zur Höheren Mathematik vorkommen. Für viele der verwendeten Beispiele wird die Lösung mit den Programmsystemen MAPLE oder MATLAB vorgeführt. Der Band erleichtert den Übergang von der Schule zur Hochschule.
Les mer
Springer Book Archives
Lineare Algebra - modern, studienfreundlich, praxisorientiert
Lineare Algebra - modern, studienfreundlich, praxisorientiert

Produktdetaljer

ISBN
9783519003700
Publisert
2003-11-26
Utgiver
Springer Fachmedien Wiesbaden
Høyde
240 mm
Bredde
170 mm
Aldersnivå
Upper undergraduate, P, 06
Språk
Product language
Tysk
Format
Product format
Heftet
Antall sider
229

Biografisk notat

Dr. Andreas Fischer, Universität Dortmund
Prof. Dr. Winfried Schirotzek, TU Dresden
Dr. Klaus Vetters, TU Dresden