Many materials can be modeled either as discrete systems or as continua, depending on the scale. At intermediate scales it is necessary to understand the transition from discrete to continuous models and variational methods have proved successful in this task, especially for systems, both stochastic and deterministic, that depend on lattice energies. This is the first systematic and unified presentation of research in the area over the last 20 years. The authors begin with a very general and flexible compactness and representation result, complemented by a thorough exploration of problems for ferromagnetic energies with applications ranging from optimal design to quasicrystals and percolation. This leads to a treatment of frustrated systems, and infinite-dimensional systems with diffuse interfaces. Each topic is presented with examples, proofs and applications. Written by leading experts, it is suitable as a graduate course text as well as being an invaluable reference for researchers.
Read more
1. Introduction; 2. Preliminaries; 3. Homogenization of pairwise systems with positive coefficients; 4. Compactness and integral representation; 5. Random lattices; 6. Extensions; 7. Frustrated systems; 8. Perspectives towards dense graphs; A. Multiscale analysis; B. Spin systems as limits of elastic interactions; References; Index.
Read more
A systematic presentation of discrete-to-continuum results and methods, offering new perspectives on intrinsically discrete problems.

Product details

ISBN
9781009298780
Published
2023-12-21
Publisher
Cambridge University Press
Weight
533 gr
Height
235 mm
Width
155 mm
Thickness
20 mm
Age
G, 01
Language
Product language
Engelsk
Format
Product format
Innbundet
Number of pages
295