<p>From the reviews:</p>
<p></p>
<p>"This is a book about differential geometry and elasticity theory also published earlier as journal article. And, indeed it covers both subjects in a coextensive way that can not be found in any other book in the field. … the list of references containing more than 120 items is representative enough and the interested reader should be able to find them among these." (Ivailo Mladenov, Zentralblatt MATH, Vol. 1100 (2), 2007)</p>
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
Read more
Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory.
Read more
Three-Dimensional Differential Geometry.- Differential Geometry of Surfaces.- Applications to Three-Dimensional Elasticity in Curvilinear Coordinates.- Applications to Shell Theory.
Self-contained treatment Interplay between differential geometry and elasticity theory
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Read more
Product details
ISBN
9781402042478
Published
2006-02-22
Publisher
Springer-Verlag New York Inc.
Height
232 mm
Width
156 mm
Age
Research, P, 06
Language
Product language
Engelsk
Format
Product format
Innbundet
Number of pages
209
Author