Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:

  • Basic knowledge (data & challenges) on social media analytics
  • Clustering as a fundamental technique for unsupervised knowledge discovery and data mining
  • A class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering 
  • Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domain

Adaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction.

It presents initiatives on the mathematical demonstration of ART’s learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks.

Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:

  • How to process big streams of multimedia data?
  • How to analyze social networks with heterogeneous data?
  • How to understand a user’s interests by learning from online posts and behaviors?
  • How to create a personalized search engine by automatically indexing and searching multimodal information resources?          

.

       


Les mer
Part 1: Theories.- Introduction.- Clustering and Extensions in the Social Media Domain .- Adaptive Resonance Theory (ART) for Social Media Analytics.- Part II: Applications.- Personalized Web Image Organization.- Socially-Enriched Multimedia Data Co-Clustering.- Community Discovery in Heterogeneous Social Networks.- Online Multimodal Co-Indexing and Retrieval of Social Media Data.- Concluding Remarks.
Les mer

Social media data contains our communication and online sharing, mirroring our daily life. This book looks at how we can use and what we can discover from such big data:

  • Basic knowledge (data & challenges) on social media analytics
  • Clustering as a fundamental technique for unsupervised knowledge discovery and data mining
  • A class of neural inspired algorithms, based on adaptive resonance theory (ART), tackling challenges in big social media data clustering
  • Step-by-step practices of developing unsupervised machine learning algorithms for real-world applications in social media domain

Adaptive Resonance Theory in Social Media Data Clustering stands on the fundamental breakthrough in cognitive and neural theory, i.e. adaptive resonance theory, which simulates how a brain processes information to perform memory, learning, recognition, and prediction.

It presents initiatives on the mathematical demonstration of ART’s learning mechanisms in clustering, and illustrates how to extend the base ART model to handle the complexity and characteristics of social media data and perform associative analytical tasks.

Both cutting-edge research and real-world practices on machine learning and social media analytics are included in the book and if you wish to learn the answers to the following questions, this book is for you:

  • How to process big streams of multimedia data?
  • How to analyze social networks with heterogeneous data?
  • How to understand a user’s interests by learning from online posts and behaviors?
  • How to create a personalized search engine by automatically indexing and searching multimodal information resources?

Les mer
Deepens your understanding on social media analytics Broadens your insight on clustering as a fundamental technique for unsupervised knowledge discovery and data mining Equips readers with a class of neural inspired algorithms based on adaptive resonance theory (ART), to tackle challenges in clustering big social media data Offers a step-by-step guide to developing unsupervised machine learning algorithms for real-world applications that transfer social media data to actionable intelligence
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783030029845
Publisert
2019-05-14
Utgiver
Vendor
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet