While physics can seem challenging, its true quality is the sheer simplicity of fundamental physical theories--theories and concepts that can enrich your view of the world around you. COLLEGE PHYSICS, Tenth Edition, provides a clear strategy for connecting those theories to a consistent problem-solving approach, carefully reinforcing this methodology throughout the text and connecting it to real-world examples. For students planning to take the MCAT exam, the text includes exclusive test prep and review tools to help you prepare.
Les mer
Provides a strategy for connecting theories to a consistent problem-solving approach.
Part I: MECHANICS.
1. Introduction.
Standards of Length, Mass, and Time. The Building Blocks of Matter. Dimensional Analysis. Uncertainty in Measurement and Significant Figures. Conversion of Units. Estimates and Order-of-Magnitude Calculations. Coordinate Systems. Trigonometry.
2. Motion in One Dimension.
Displacement. Velocity. Acceleration. Motion Diagrams. One-Dimensional Motion with Constant Acceleration. Freely Falling Objects.
3. Vectors and Two-Dimensional Motion.
Vectors and Their Properties. Components of a Vector. Displacement, Velocity, and Acceleration in Two Dimensions. Motion in Two Dimensions. Relative Velocity.
4. The Laws of Motion.
Forces. Newton's First Law. Newton's Second Law. Newton's Third Law. Applications of Newton's Laws. Forces of Friction.
5. Energy.
Work. Kinetic Energy and the Work–Energy Theorem. Gravitational Potential Energy. Spring Potential Energy. Systems and Energy Conservation. Power. Work Done by a Varying Force.
6. Momentum and Collisions.
Momentum and Impulse. Conservation of Momentum. Glancing Collisions. Rocket Propulsion.
7. Rotational Motion and the Law of Gravity.
Angular Speed and Angular Acceleration. Rotational Motion Under Constant Angular Acceleration. Relations Between Angular and Linear Quantities. Centripetal Acceleration. Newtonian Gravitation. Kepler's Laws.
8. Rotational Equilibrium and Rotational Dynamics.
Torque. Torque and the Two Conditions for Equilibrium. The Center of Gravity. Examples of Objects in Equilibrium. Relationship Between Torque and Angular Acceleration. Rotational Kinetic Energy. Angular Momentum.
9. Solids and Fluids.
States of Matter. Density and Pressure. The Deformation of Solids. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces and Archimedes' Principle. Fluids in Motion. Other Applications of Fluid Dynamics. Surface Tension, Capillary Action, and Viscous Fluid Flow. Transport Phenomena.
Part II: THERMODYNAMICS.
10. Thermal Physics.
Temperature and the Zeroth Law of Thermodynamics. Thermometers and Temperature Scales. Thermal Expansion of Solids and Liquids. Macroscopic Description of an Ideal Gas. The Kinetic Theory of Gases.
11. Energy in Thermal Processes
Heat and Internal Energy. Specific Heat. Calorimetry. Latent Heat and Phase Change. Energy Transfer. Global Warming and Greenhouse Gases.
12. The Laws of Thermodynamics
Work in Thermodynamic Processes. The First Law of Thermodynamics. Thermal Processes. Heat Engines and the Second Law of Thermodynamics. Entropy. Human Metabolism.
Part III: VIBRATIONS AND WAVES.
13. Vibrations and Waves.
Hooke's Law. Elastic Potential Energy. Comparing Simple Harmonic Motion with Uniform Circular Motion. Position, Velocity, and Acceleration as a Function of Time. Motion of a Pendulum. Damped Oscillations. Waves. Frequency, Amplitude, and Wavelength. The Speed of Waves on Strings. Interference of Waves. Reflection of Waves.
14. Sound.
Producing a Sound Wave. Characteristics of Sound Waves. The Speed of Sound. Energy and Intensity of Sound Waves. Spherical and Plane Waves. The Doppler Effect. Interference of Sound Waves. Standing Waves. Forced Vibrations and Resonance. Standing Waves in Air Columns. Beats. Quality of Sound. The Ear.
Part IV: ELECTRICITY AND MAGNETISM.
15. Electric Forces and Electric Fields.
Properties of Electric Charges. Insulators and Conductors. Coulomb's Law. The Electric Field. Electric Field Lines. Conductors in Electrostatic Equilibrium. The Millikan Oil-Drop Experiment. The Van de Graaff Generator. Electric Flux and Gauss's Law.
16. Electrical Energy and Capacitance.
Electric Potential Energy and Electric Potential. Electric Potential and Potential Energy Due to Point Charges. Potentials and Charged Conductors. Equipotential Surfaces. Applications. Capacitance. The Parallel-Plate Capacitor. Combinations of Capacitors. Energy Stored in a Charged Capacitor. Capacitors with Dielectrics.
17. Current and Resistance
Electric Current. A Microscopic View: Current and Drif
Les mer
Produktdetaljer
ISBN
9781285737027
Publisert
2014-01-01
Utgave
10. utgave
Utgiver
Cengage Learning, Inc
Vekt
2490 gr
Høyde
18 mm
Bredde
87 mm
Dybde
110 mm
Aldersnivå
U, 05
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
1136