In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. The first chapters are of foundational type. We introduce the mapping from a left Riemann manifold to a right one specified as conformal, equiaerial and equidistant, perspective and geodetic. In particular, the mapping from a Riemann manifold to a Euclidean manifold ("plane") and the design of various coordinate systems are reviewed . A speciality is the treatment of surfaces of Gaussian curvature zero. The largest part is devoted to the mapping the sphere and the ellipsoid-of-revolution to tangential plane, cylinder and cone (pseudo-cone) using the polar aspect, transverse as well as oblique aspect. Various Geodetic Mappings as well as the Datum Problem are reviewed. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps. The second extension reviews alternative maps for structures , namely torus (pneu), hyperboloid (cooling tower), paraboloid (parabolic mirror), onion shape (church tower) as well as clothoid (Hight Speed Railways) used in Project Surveying. Third, we present the Datum Transformation described by the Conformal Group C10 (3) in a threedimensional Euclidean space , a ten parameter conformal transformation. It leaves infinitesimal angles and distance ratios equivariant. Numerical examples from classical and new map projections as well as twelve appendices document the Wonderful World of Map Projections.

Les mer

In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps.

Les mer
From the Contents: From Riemann manifolds to Riemann manifolds.- From Riemann manifolds to Euclidean manifolds.- Coordinates.- Surfaces of Gaussian curvature zero.- Sphere to tangential plane': polar (normal) aspect.- Sphere to tangential plane': transverse aspect.- Sphere to tangential plane: oblique aspect.- Ellipsoid-of-revolution to tangential plane.- Ellipsoid-of-revolution to sphere and from sphere to plane.- Sphere to cylinder: polar aspect.- Sphere to cylinder: transverse aspect.
Les mer
In the context of Geographical Information Systems (GIS) the book offers a timely review of Map Projections. The first chapters are of foundational type. We introduce the mapping from a left Riemann manifold to a right one specified as conformal, equiaerial and equidistant, perspective and geodetic. In particular, the mapping from a Riemann manifold to a Euclidean manifold ("plane") and the design of various coordinate systems are reviewed . A speciality is the treatment of surfaces of Gaussian curvature zero. The largest part is devoted to the mapping the sphere and the ellipsoid-of-revolution to tangential plane, cylinder and cone (pseudo-cone) using the polar aspect, transverse as well as oblique aspect. Various Geodetic Mappings as well as the Datum Problem are reviewed. In the first extension we introduce optimal map projections by variational calculus for the sphere, respectively the ellipsoid generating harmonic maps. The second extension reviews alternative maps for structures ,  namely torus (pneu), hyperboloid (cooling tower), paraboloid (parabolic mirror), onion shape (church tower) as well as clothoid (Hight Speed Railways) used in Project Surveying. Third, we present the Datum Transformation described by the Conformal Group C10 (3) in a threedimensional Euclidean space , a ten parameter conformal transformation. It leaves infinitesimal angles and distance ratios equivariant. Numerical examples from classical and new map projections as well as twelve appendices document the Wonderful World of Map Projections.
Les mer
The book is of great benefit for the target group There is no competition from other text books or from other publications The book is the first complete review of the topic of Map Projections to a lot of other sciences Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783662517468
Publisert
2017-05-04
Utgave
2. utgave
Utgiver
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Høyde
279 mm
Bredde
210 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet

Biografisk notat

Prof. Dr. Erik W. Grafarend, Stuttgart University, Stuttgart, Germany email: grafarend@gis.uni-stuttgart.de

Prof. Dr.-Ing. Rey-Jer You, National Cheng Kung University, Tainan, Taiwan Dipl.-Ing.

Rainer Syffus, ESG Elektroniksystem- und Logistik GmbH, Fuerstenfeldbruck, Germany