'The book will probably make a useful addition to the office|library collection of every researcher or mathematical centre with interests in analysis with anticommuting variables.' Mathematical Reviews Clippings (2001)
This work could be recommended as a course in superanalysis, the theory of functions of commuting and anticommuting variables. It follows the so-called functional superanalysis which was developed by J. Schwinger, B. De Witt, A. Rogers, V.S. Vladimirov and I.V. Volovich, Yu. Kobayashi and S. Nagamashi, M. Batchelor, U. Buzzo and R. Cianci and the present author. In this approach, superspace is defined as a set of points on which commuting and anticommuting coordinates are given. Thus functional superanalysis is a natural generalization of Newton's analysis (on real space) and strongly differs from the so-called algebraic analysis which has no functions of superpoints, and where "functions" are just elements of Grassmann algebras. It offers the possibility of extending the notion of space, and of operating on spaces which are described by noncommuting coordinates. These supercoordinates, which are described by an infinite number of ordinary real, complex or p-adic coordinates, are interpreted as creation or annihilation operators of quantum field theory.
Subjects treated include differential calculus, including Cauchy-Riemann conditions, on superspaces over supercommutative Banach and topological superalgebras; integral calculus, including integration of differential forms; theory of distributions and linear partial differential equations with constant coefficients; calculus of pseudo-differential operators; analysis on infinite-dimensional superspaces over supercommutative Banach and topological supermodules; infinite-dimensional superdistributions and Feynman integrals with applications to superfield theory; noncommutative probabilities (central limit theorem); and non-Archimedean superanalysis.
Les mer
defined as elements of Grassmann algebra (an algebra with anticom muting generators). What is more, Schwinger's formalism was still used in practically all physical works, on an intuitive level, and physicists regarded functions of anticommuting variables as "real functions" == maps of sets and not as elements of Grassmann algebras.
Les mer
Springer Book Archives
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9780792356073
Publisert
1999-09-30
Utgiver
Kluwer Academic Publishers
Høyde
244 mm
Bredde
170 mm
Aldersnivå
Research, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
9
Forfatter