Efficient navigation in terms of travel time and energy dissipation is of crucial importance for biological micro-swimmers. The design of optimally navigating artificial swimmers also has potentially valuable applications such as targeted drug delivery, which has become an increasingly realistic perspective due to the recent progress in the experimental realization of controllable microswimmers able to perform nontrivial tasks. Despite recent theoretical progress, the field still faces open challenges, notably in describing navigation problems that take into account the complexities of the world of microswimmers.

This book presents a selection of works on the problem of optimal microswimmer navigation that represent a significant advance in this direction. The material in this book provides important insights into how efficient navigation may be achieved in the presence of curved space geometry, confining forces and flows, as well as thermal fluctuations. Finally, the energetic cost of navigation is addressed via a new formulation of the problem that accounts for the swimmer body geometry.

Les mer
Despite recent theoretical progress, the field still faces open challenges, notably in describing navigation problems that take into account the complexities of the world of microswimmers.

This book presents a selection of works on the problem of optimal microswimmer navigation that represent a significant advance in this direction.

Les mer
Introduction.- Optimal navigation strategies for active particles on curved surfaces.- Efficiency of navigation strategies for active particles in rugged landscapes.- Optimal navigation in complex and noisy environments.- Towards a more realistic description of optimal navigation.
Les mer
Efficient navigation in terms of travel time and energy dissipation is of crucial importance for biological micro-swimmers. The design of optimally navigating artificial swimmers also has potentially valuable applications such as targeted drug delivery, which has become an increasingly realistic perspective due to the recent progress in the experimental realization of controllable microswimmers able to perform nontrivial tasks. Despite recent theoretical progress, the field still faces open challenges, notably in describing navigation problems that take into account the complexities of the world of microswimmers.
This book presents a selection of works on the problem of optimal microswimmer navigation that represent a significant advance in this direction. The material in this book provides important insights into how efficient navigation may be achieved in the presence of curved space geometry, confining forces and flows, as well as thermal fluctuations. Finally, the energetic cost of navigation is addressed via a new formulation of the problem that accounts for the swimmer body geometry.
Les mer
Nominated as an outstanding PhD thesis by the MPI for Dynamics and Self-Organization, Göttingen, Germany Provides a comprehensive review of the expanding field of optimal navigation and its applications Presents key adavances in the field of microswimmers navigation
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783031525797
Publisert
2025-03-01
Utgiver
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
122

Forfatter