Dieses Buch entstand nach einer einsemestrigen Vorlesung an der Humboldt-Universitat Berlin im Studienjahr 1996/ 97 und ist eine Einfuhrung in die Theorie der Spinoren und Dirac-Operatoren uber Riemannschen Mannigfaltigkeiten. Vom Leser werden nur die grundlegenden Kenntnisse der Algebra und Geometrie im Umfang von zwei bis drei Jahren eines Mathematik- oder Physikstudiums erwartet. Ein Anhang gibt eine Einfuhrung in das aktuelle Gebiet der Seiberg-Witten-Theorie.
Les mer
1 Clifford-Algebren und Spin-Darstellung.- 1.1 Lineare Algebra quadratischer Formen.- 1.2 Die Clifford-Algebra einer quadratischen Form.- 1.3 Clifford-Algebren reeller, negativ-definiter quadratischer Formen.- 1.4 Die Pin- und die Spin-Gruppe.- 1.5 Die Spin-Darstellung.- 1.6 Die Gruppe SpinC.- 1.7 Reelle und quaternionische Strukturen im Raum der n-Spinoren.- 1.8 Literatur und Aufgaben.- 2 Spin-Strukturen.- 2.1 Existenz und Klassifikation von Spin-Strukturen eines SO(n)-Hauptfaserbündels.- 2.2 Beschreibung von Spin-Strukturen in Überlagerungen.- 2.3 Spin-Strukturen von G-Hauptfaserbündeln.- 2.4 Existenz von SpinC-Strukturen.- 2.5 Assoziierte Spinorbündel.- 2.6 Literatur und Aufgaben.- 3 Dirac-Operatoren.- 3.1 Zusammenhänge in Spinorbündeln.- 3.2 Der Dirac- und der Laplace-Operator im Spinorbündel.- 3.3 Die Lichnerowicz-Formel.- 3.4 Hermitesche Mannigfaltigkeiten und Spinoren.- 3.5 Der Dirac-Operator eines Riemannsch-symmetrischen Raumes.- 3.6 Literatur und Aufgaben.- 4 Analytische Eigenschaften der Dirac-Operatoren.- 4.1 Die wesentliche Selbstadjungiertheit von Dirac-Operatoren in L2.- 4.2 Das Spektrum von Dirac-Operatoren über kompakten Mannigfaltigkeiten.- 4.3 Dirac-Operatoren sind Fredholm-Operatoren.- 4.4 Literatur und Aufgaben.- 5 Abschätzungen der Eigenwerte des Dirac-Operators und Lösungen der Twistorgleichung.- 5.1 Abschätzungen von unten der Eigenwerte des Dirac-Operators.- 5.2 Riemannsche Mannigfaltigkeiten mit Killing-Spinoren.- 5.3 Die Twistorgleichung auf Riemannschen Mannigfaltigkeiten.- 5.4 Abschätzungen von oben der Eigenwerte des Dirac-Operators.- 5.5 Literatur und Aufgaben.- 6 Anhang 1: Seiberg-Witten-Invarianten.- 6.1 Zur Topologie 4-dimensionaler Mannigfaltigkeiten.- 6.2 Die Seiberg-Witten-Gleichung.- 6.3 Die Seiberg-Witten-Invariante.-6.4 Verschwindungssätze.- 6.5 Der Fall dim mL(g) = 0.- 6.6 Der Kähler-Fall.- 6.7 Literatur.- 7 Anhang 2: Hauptfaserbündel und Zusammenhänge.- 7.1 Lokal-triviale Faserungen, Hauptfaserbündel, assoziierte Bündel und Vektorbündel — Beispiele und Definitionen.- 7.2 Der Klassifizierungsraum einer topologischen Gruppe und die Homotopieklassifikation der Hauptfaserbündel.- 7.3 Zusammenhänge in Hauptfaserbündeln.- 7.4 Absolutes Differential und Krümmung eines Zusammenhangs.- 7.5 Zusammenhänge in U(1)-Hauptfaserbündeln und der Satz von Weyl.- 7.6 Induzierte Zusammenhänge und Reduktion eines Zusammenhangs.- 7.7 Die globale Variante des Frobenius-Theorems.- 7.8 Der Satz von Freudenthal-Yamabe.- 7.9 Holonomietheorie.- Literatur.- Namens- und Sachverzeichnis.
Les mer
Springer Book Archives
Aktuelles Gebiet der Mathematischen Physik

Produktdetaljer

ISBN
9783528069261
Publisert
1997-06-13
Utgiver
Springer Fachmedien Wiesbaden
Høyde
229 mm
Bredde
162 mm
Aldersnivå
Upper undergraduate, P, 06
Språk
Product language
Tysk
Format
Product format
Heftet
Antall sider
207

Forfatter

Biografisk notat

Prof. Dr. sc. Thomas Friedrich lehrt Mathematik an der Humboldt-Universität zu Berlin.