“The book is well written and mathematically rigorous. They authors collect a large variety of results and try to parallel the theory with applications and they do this rather successfully. It may become a standard reference for researchers working on the topic of central limit theorems and large deviation. … this is a useful book for a researcher in probability theory and mathematical statistics. It is very carefully written and collects many new results.” (Nikolai N. Leonenko, zbMATH 1387.60003, 2018)<br />“This beautiful book (together with other publications by these authors) opens a new way of proving limit theorems in probability theory and related areas such as probabilistic number theory, combinatorics, and statistical mechanics. It will be useful to researchers in these and many other areas.” (Zakhar Kabluchko, Mathematical Reviews, September, 2017)<br />

The canonical way to establish the central limit theorem for i.i.d. random variables is to use characteristic functions and Lévy’s continuity theorem. This monograph focuses on this characteristic function approach and presents a renormalization theory called mod-ϕ convergence. This type of convergence is a relatively new concept with many deep ramifications, and has not previously been published in a single accessible volume. The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects. Intended for researchers in probability theory, the text is carefully well-written and well-structured, containing a great amount of detail and interesting examples. 
Les mer
The authors construct an extremely flexible framework using this concept in order to study limit theorems and large deviations for a number of probabilistic models related to classical probability, combinatorics, non-commutative random variables, as well as geometric and number-theoretical objects.
Les mer
Preface.- Introduction.- Preliminaries.- Fluctuations in the case of lattice distributions.- Fluctuations in the non-lattice case.- An extended deviation result from bounds on cumulants.- A precise version of the Ellis-Gärtner theorem.- Examples with an explicit generating function.- Mod-Gaussian convergence from a factorisation of the PGF.- Dependency graphs and mod-Gaussian convergence.- Subgraph count statistics in Erdös-Rényi random graphs.- Random character values from central measures on partitions.- Bibliography.
Les mer
First of its kind publication detailing the mod-? convergence method Written by leading experts in probability theory Provides a large number of new results Includes new examples coming from various areas of mathematics such as probability theory, number theory, combinatorics, and random matrix theory Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783319468211
Publisert
2016-12-16
Utgiver
Springer International Publishing AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet