From the reviews of the first edition: "It is the first textbook seriously covering locally convex theory over K, so ... it is most welcome. ... the book is self-contained, complete with all proofs, and therefore attractive also to those who are not acquainted with the above area. ... The book is well-written, with care for details. Recommended." (W.H. Schikhof, Jahresbericht der Deutschen Mathematiker Vereinigung, Vol. 106 (1), 2004) "The book under review is a self-contained text concerning the theory of locally convex spaces over non-Archimedean fields. ... The book is carefully written and incorporates for the first time results that have only appeared in papers. It will be a valuable reference work either for specialists or for non-specialists in the field." (Dinamerico P. Pombo, Jr., Mathematical Reviews, Issue 2003 a) "Functional analysis over nonarchimedean fields has become an area of growing interest ... . In the present book the author gives a concise and clear account of this theory, carefully lays the foundations, and also develops the more advanced topics. ... This book gives a streamlined introduction for researchers and graduate students who want to apply these methods to other areas, and it would probably also provide a valuable reference source for researchers in the field." (Anton Deitmar, Bulletin of the London Mathematical Society, Vol. 34, 2002) "The present book is a self-contained text which leads the reader through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. ... The book gives a concise and clear account of this theory, it carefully lays the foundations and also develops the more advanced topics. Although the book will be a valuable reference work for experts in the field, it is mainly intended as streamlined but detailed introduction for researchers and graduate students ... ." (L'Enseignement Mathematique, Vol. 48 (1-2), 2002)

The present book is a self-contained text which leads the reader through all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields. One can observe an increasing interest in methods from nonarchimedean functional analysis, particularly in number theory and in the representation theory of p-adic reductive groups. The book gives a concise and clear account of this theory, it carefully lays the foundations and also develops the more advanced topics. Although the book will be a valuable reference work for experts in the field, it is mainly intended as a streamlined but detailed introduction for researchers and graduate students who wish to apply these methods in different areas.
Les mer
Although much progress has been made to overcome this problem a really nice and complete theory which to a large extent is analogous to classical functional analysis can only exist over spherically complete field8.
Les mer
Covers all the important aspects of the theory of locally convex vector spaces over nonarchimedean fields Gives the foundations of the theory and also develops the more advanced topics Concise introduction for the researcher and the graduate student who want to apply this theory Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540425335
Publisert
2001-11-20
Utgiver
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Høyde
234 mm
Bredde
156 mm
Aldersnivå
Research, UP, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
7

Forfatter