From the reviews: "The subject of this book is the a posterior error analysis for mathematical idealizations in applied boundary value problems (BVPs) ... . A very nice book, well structured and written, coupling mathematical theory and numerical results and tests for applied problems." (Viorel Arnautu, Zentralblatt MATH, Vol. 1081, 2006) "I believe that this book is the first book to present a systematical study in applying the duality theory to deriving a posteriori error estimates for a variety of interesting problems. ... The book is very well written. ... this nice book is quite easy to follow. I believe that the book will be very useful for researchers and graduate students in applied and computational mathematics and engineering." (Wen Bin Liu, Mathematical Reviews, Issue 2005 k)

This volume provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear variational problems. The author avoids giving the results in the most general, abstract form so that it is easier for the reader to understand more clearly the essential ideas involved. Many examples are included to show the usefulness of the derived error estimates.
Les mer
This work provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear var- tional problems.
Les mer

This volume provides a posteriori error analysis for mathematical idealizations in modeling boundary value problems, especially those arising in mechanical applications, and for numerical approximations of numerous nonlinear variational problems. The author avoids giving the results in the most general, abstract form so that it is easier for the reader to understand more clearly the essential ideas involved. Many examples are included to show the usefulness of the derived error estimates.

Audience

This volume is suitable for researchers and graduate students in applied and computational mathematics, and in engineering.

Les mer
There is no other book of its kind Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9781441936363
Publisert
2010-12-06
Utgiver
Springer-Verlag New York Inc.
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
16

Forfatter