<p>From the reviews:</p><p>“The book contains detailed information concerning the two-parameter semigroups defined by a quite general class of difference equations. … The Hartman-Grobman theory also receives considerable attention. … this is a well-written book which will be very useful to the reader interested in the topics which it discusses.” (Russell A. Johnson, Mathematical Reviews, Issue 2012 a)</p><p>“The monograph is a rich resource for a consistent theory of nonautonomous difference equations, in particular their stability theory and the connection between linear and nonlinear systems. … The reader … who is interested in a thorough course on the theory of difference equations will benefit from this book which combines summaries on the different topics with precise and new results.” (Jörg Härterich, Zentralblatt MATH, Vol. 1247, 2012)</p>

Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.
Les mer
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects.
Les mer
Nonautonomous Dynamical Systems.- Nonautonomous Difference Equations.- Linear Difference Equations.- Invariant Fiber Bundles.- Linearization.
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.
Les mer
Comprehensive approach to discrete dynamical systems Applications to numerical discretizations Extensive invariant manifold theory Includes supplementary material: sn.pub/extras
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783642142574
Publisert
2010-09-18
Utgiver
Springer-Verlag Berlin and Heidelberg GmbH & Co. KG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
399