• 1. Introduction
  • 2. Orthogonal $G$-spectra and the Tate fixed points
  • 3. A lax Kunneth theorem for Tate fixed points
  • 4. The Tate spectral sequences
  • 5. Topological periodic cyclic homology
  • 6. A filtration argument (Proof of Theorem A)
  • 7. Filtered modules over filtered ring orthogonal spectra
  • 8. Comparison of the lefthand and righthand spectral sequences (Proof of Theorem 6.3)
  • 9. Conditional convergence of the lefthand spectral sequence (Proof of Lemma 6.5)
  • 10. Constructing the filtered model: The positive filtration
  • 11. Constructing the filtered model: The negative filtration
  • 12. Constructing the filtered model and verifying the hypotheses of Chapter 6
  • 13. The $E^1$-term of the Hesselholt-Madsen $\mathbb {T}$-Tate spectral sequence
  • 14. Comparison of the Hesselholt-Madsen and Greenlees $\mathbb {T}$-Tate Spectral Sequences
  • 15. Coherence of the equivalences $E\mathbb {T}/E\mathbb {T}_{2n-1}\simeq E\mathbb {T}_{+}\wedge S^{\mathbb {C}(1)^{n}}$ (Proof of Lemma 13.3)
  • 16. The strong Kunneth theorem for $THH$
  • 17. $THH$ of smooth and proper algebras (Proof of Theorem C)
  • 18. The finiteness theorem for $TP$ (Proof of Theorem B)
  • 19. Comparing monoidal models
  • 20. Identification of the enveloping algebras and $\operatorname {Bal}$
  • 21. A topologically enriched lax symmetric monoidal fibrant replacement functor for equivariant orthogonal spectra (Proof of Lemma 3.1)
Read more

Product details

ISBN
9781470471385
Published
2024-10-20
Publisher
Vendor
American Mathematical Society
Height
254 mm
Width
178 mm
Age
P, 06
Language
Product language
Engelsk
Format
Product format
Heftet
Number of pages
102

Biographical note

Andrew J. Blumberg, Columbia University, New York, New York.

Michael A. Mandell, Indiana University, Bloomington, Indiana.