The Practical, Start-to-Finish Guide to Modern Digital Design Verification

As digital logic designs grow larger and more complex, functional verification has become the number one bottleneck in the design process. Reducing verification time is crucial to project success, yet many practicing engineers have had little formal training in verification, and little exposure to the newest solutions. Hardware Design Verification systematically presents today's most valuable simulation-based and formal verification techniques, helping test and design engineers choose the best approach for each project, quickly gain confidence in their designs, and move into fabrication far more rapidly. College students will find that coverage of verification principles and common industry practices will help them prepare for jobs as future verification engineers.

Author William K. Lam, one of the world's leading experts in design verification, is a recent winner of the Chairman's Award for Innovation, Sun Microsystems' most prestigious technical achievement award. Drawing on his wide-ranging experience, he introduces the foundational principles of verification, presents traditional techniques that have survived the test of time, and introduces emerging techniques for today's most challenging designs. Throughout, Lam emphasizes practical examples rather than mathematical proofs; wherever advanced math is essential, he explains it clearly and accessibly.

Coverage includes

  • Simulation-based versus formal verification: advantages, disadvantages, and tradeoffs
  • Coding for verification: functional and timing correctness, syntactical and structure checks, simulation performance, and more
  • Simulator architectures and operations, including event-driven, cycle-based, hybrid, and hardware-based simulators
  • Testbench organization, design, and tools: creating a fast, efficient test environment
  • Test scenarios and assertion: planning, test cases, test generators, commercial and Verilog assertions, and more
  • Ensuring complete coverage, including code, parameters, functions, items, and cross-coverage
  • The verification cycle: failure capture, scope reduction, bug tracking, simulation data dumping, isolation of underlying causes, revision control, regression, release mechanisms, and tape-out criteria
  • An accessible introduction to the mathematics and algorithms of formal verification, from Boolean functions to state-machine equivalence and graph algorithms
  • Decision diagrams, equivalence checking, and symbolic simulation
  • Model checking and symbolic computation

Simply put, Hardware Design Verification will help you improve and accelerate your entire verification process--from planning through tape-out--so you can get to market faster with higher quality designs.

Les mer
Preface xvii Acknowledgments xxiii About the Author xxv Chapter 1 An Invitation to Design Verification 1

1.1 What Is Design Verification? 2

1.2 The Basic Verification Principle 4

1.3 Verification Methodology 8

1.4 Simulation-Based Verification versus Formal Verification 15

1.5 Limitations of Formal Verification 17

1.6 A Quick Overview of Verilog Scheduling and Execution Semantics 17

1.7 Summary 23

Chapter 2 Coding for Verification 25

2.1 Functional Correctness 27

2.2 Timing Correctness 39

2.3 Simulation Performance 44

2.4 Portability and Maintainability 52

2.5 "Synthesizability," "Debugability," and General Tool Compatibility 56

2.6 Cycle-Based Simulation 59

2.7 Hardware Simulation/Emulation 62

2.8 Two-State and Four-State Simulation 64

2.9 Design and Use of a Linter 66

2.10 Summary 67

2.11 Problems 67

Chapter 3 Simulator Architectures and Operations 73

3.1 The Compilers 74

3.2 The Simulators 79

3.3 Simulator Taxonomy and Comparison 108

3.4 Simulator Operations and Applications 112

3.5 Incremental Compilation 126

3.6 Summary 129

3.7 Problems 130

Chapter 4 Test Bench Organization and Design 137

4.1 Anatomy of a Test Bench and a Test Environment 137

4.2 Initialization Mechanism 142

4.3 Clock Generation and Synchronization 148

4.4 Stimulus Generation 155

4.5 Response Assessment 162

4.6 Verification Utility 183

4.7 Test Bench-to-Design Interface 195

4.8 Common Practical Techniques and Methodologies 196

4.9 Summary 204

4.10 Problems 204

Chapter 5 Test Scenarios, Assertions, and Coverage 211

5.1 Hierarchical Verification 214

5.2 Test Plan 217

5.3 Pseudorandom Test Generator 227

5.4 Assertions 232

5.5 SystemVerilog Assertions 248

5.6 Verification Coverage 259

5.7 Summary 279

5.8 Problems 280

Chapter 6 Debugging Process and Verification Cycle 287

6.1 Failure Capture, Scope Reduction, and Bug Tracking 288

6.2 Simulation Data Dumping 297

6.3 Isolation of Underlying Causes 300

6.4 Design Update and Maintenance: Revision Control 315

6.5 Regression, Release Mechanism, and Tape-out Criteria 318

6.6 Summary 321

6.7 Problems 322

Chapter 7 Formal Verification Preliminaries 331

7.1 Sets and Operations 332

7.2 Relation, Partition, Partially Ordered Set, and Lattice 334

7.3 Boolean Functions and Representations 342

7.4 Boolean Functional Operators 353

7.5 Finite-State Automata and Languages 359

7.6 Summary 380

7.7 Problems 381

Chapter 8 Decision Diagrams, Equivalence Checking, and Symbolic Simulation 387

8.1 Binary Decision Diagrams 388

8.2 Decision Diagram Variants 412

8.3 Decision Diagram-Based Equivalence Checking 424

8.4 Boolean Satisfiability 430

8.5 Symbolic Simulation 442

8.6 Summary 457

8.7 Problems 458

Chapter 9 Model Checking and Symbolic Computation 465

9.1 Properties, Specifications, and Logic 466

9.2 Property Checking 484

9.3 Symbolic Computation and Model Checking 494

9.4 Symbolic CTL Model Checking 513

9.5 Computational Improvements 524

9.6 Using Model-Checking Tools 529

9.7 Summary 531

9.8 Problems 531

Bibliography 539 Index 561
Les mer

Two groups of people are essential to a successful design project: a design teamand a verification team. Designers usually have formal training from schools.Many colleges have comprehensive curricula on logic design, ranging fromintroduction to digital design to advanced computer architecture. On thecontrary, most verification engineers learn their trade on the job; few wereeducated as verification engineers in academia, although many schools arebeginning to teach verification curriculum. In fact, a majority of verificationengineers started out as designers and gradually transited to design verification.Unlike design techniques and methodologies, a broad range of verificationknowledge is loosely organized and informally acquired through hands-onexperiences. Further, the horizon of verification has been expanding at a rapidpace; verification landscape is evolving every six months with new techniques,standards, and tools. Nevertheless, there are principles and techniques thathave survived the test of time and prove to be corner stones of verification.This book attempts to collect and organize a wide range of digital designverification techniques and methodologies commonly used in industry andpresent them in a systematic fashion.

Les mer

Produktdetaljer

ISBN
9780137010929
Publisert
2009-03-11
Utgiver
Vendor
Prentice Hall
Vekt
1048 gr
Høyde
235 mm
Bredde
178 mm
Aldersnivå
05, UU
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
624

Forfatter

Biographical note

William K. Lam is senior engineering manager at Sun Microsystems Laboratories and the 2002 winner of the Chairman's Award for Innovation, Sun's highest award for technical achievement. He holds a Ph.D. in electrical engineering and computer science from the University of California, Berkeley, where he won the 1994 David J. Sakrison Memorial Award for distinguished Ph.D. thesis.