Many approaches have already been proposed for classification and modeling in the literature. These approaches are usually based on mathematical mod els. Computer systems can easily handle mathematical models even when they are complicated and nonlinear (e.g., neural networks). On the other hand, it is not always easy for human users to intuitively understand mathe matical models even when they are simple and linear. This is because human information processing is based mainly on linguistic knowledge while com puter systems are designed to handle symbolic and numerical information. A large part of our daily communication is based on words. We learn from various media such as books, newspapers, magazines, TV, and the Inter net through words. We also communicate with others through words. While words play a central role in human information processing, linguistic models are not often used in the fields of classification and modeling. If there is no goal other than the maximization of accuracy in classification and model ing, mathematical models may always be preferred to linguistic models. On the other hand, linguistic models may be chosen if emphasis is placed on interpretability.
Les mer
While words play a central role in human information processing, linguistic models are not often used in the fields of classification and modeling. If there is no goal other than the maximization of accuracy in classification and model ing, mathematical models may always be preferred to linguistic models.
Les mer
Linguistic Information Granules.- Pattern Classification with Linguistic Rules.- Learning of Linguistic Rules.- Input Selection and Rule Selection.- Genetics-Based Machine Learning.- Multi-Objective Design of Linguistic Models.- Comparison of Linguistic Discretization with Interval Discretization.- Modeling with Linguistic Rules.- Design of Compact Linguistic Models.- Linguistic Rules with Consequent Real Numbers.- Handling of Linguistic Rules in Neural Networks.- Learning of Neural Networks from Linguistic Rules.- Linguistic Rule Extraction from Neural Networks.- Modeling of Fuzzy Input—Output Relations.
Les mer
Clear illustration how fuzzy logic and neural networks are utilized for extracting linguistic knowledge Many figures and simulation results Reference for researchers and practitioners in data mining, fuzzy systems and neural networks Because of many illustrations and figures also possible textbook for graduate students Includes supplementary material: sn.pub/extras
Les mer
GPSR Compliance
The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this.
If you have any concerns about our products you can contact us on ProductSafety@springernature.com.
In case Publisher is established outside the EU, the EU authorized representative is:
Springer Nature Customer Service Center GmbH
Europaplatz 3
69115 Heidelberg, Germany
ProductSafety@springernature.com
Les mer
Produktdetaljer
ISBN
9783642058608
Publisert
2010-02-12
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Research, P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet