<p>This book is a very timely synthesis of classical linguistics that the author has worked in for several decades and the modern revolution in NLP enabled by Deep Learning. It also asks provocative foundational questions about whether traditional grammars are the most suitable representations of linguistic structure or if we need to go beyond them.</p><p>-- <em><strong>Devdatt Dubhashi</strong>, Professor, Chalmers University</em></p><p>Deep neural networks are having a tremendous impact on applied natural language processing. In this clearly written book, Shalom Lappin tackles the novel and exciting question of what are their implications for theories of language acquisition, representation and usage. This will be an enlightening reading for anybody interested in language from the perspectives of theoretical linguistics, cognitive science, AI and the philosophy of science.</p><p>-- <em><strong>Marco Baroni</strong>, ICREA Research Professor, Facebook AI Research Scientist</em></p>

The application of deep learning methods to problems in natural language processing has generated significant progress across a wide range of natural language processing tasks. For some of these applications, deep learning models now approach or surpass human performance. While the success of this approach has transformed the engineering methods of machine learning in artificial intelligence, the significance of these achievements for the modelling of human learning and representation remains unclear.

Deep Learning and Linguistic Representation looks at the application of a variety of deep learning systems to several cognitively interesting NLP tasks. It also considers the extent to which this work illuminates our understanding of the way in which humans acquire and represent linguistic knowledge.

Key Features:

  • combines an introduction to deep learning in AI and NLP with current research on Deep Neural Networks in computational linguistics.
  • is self-contained and suitable for teaching in computer science, AI, and cognitive science courses; it does not assume extensive technical training in these areas.
  • provides a compact guide to work on state of the art systems that are producing a revolution across a range of difficult natural language tasks.
Les mer

Deep Learning and Linguistic Representation looks at the application of a variety of deep learning systems to several cognitively interesting NLP tasks. It also considers the extent to which this work illuminates our understanding of the way in which humans acquire and represent linguistic knowledge.

Les mer

Chapter 1 Introduction: Deep Learning in Natural Language Processing
1.1 OUTLINE OF THE BOOK
1.2 FROM ENGINEERING TO COGNITIVE SCIENCE
1.3 ELEMENTS OF DEEP LEARNING
1.4 TYPES OF DEEP NEURAL NETWORKS
1.5 AN EXAMPLE APPLICATION
1.6 SUMMARY AND CONCLUSIONS

Chapter 2 Learning Syntactic Structure with Deep Neural Networks
2.1 SUBJECT-VERB AGREEMENT
2.2 ARCHITECTURE AND EXPERIMENTS
2.3 HIERARCHICAL STRUCTURE
2.4 TREE DNNS
2.5 SUMMARY AND CONCLUSIONS

Chapter 3 Machine Learning and The Sentence Acceptability Task
3.1 GRADIENCE IN SENTENCE ACCEPTABILITY
3.2 PREDICTING ACCEPTABILITY WITH MACHINE LEARNING MODELS
3.3 ADDING TAGS AND TREES
3.4 SUMMARY AND CONCLUSIONS

Chapter 4 Predicting Human Acceptability Judgments in Context
4.1 ACCEPTABILITY JUDGMENTS IN CONTEXT
4.2 TWO SETS OF EXPERIMENTS
4.3 THE COMPRESSION EFFECT AND DISCOURSE COHERENCE
4.4 PREDICTING ACCEPTABILITY WITH DIFFERENT DNN MODELS
4.5 SUMMARY AND CONCLUSIONS

Chapter 5 Cognitively Viable Computational Models of Linguistic Knowledge
5.1 HOW USEFUL ARE LINGUISTIC THEORIES FOR NLP APPLICATIONS?
5.2 MACHINE LEARNING MODELS VS FORMAL GRAMMAR
5.3 EXPLAINING LANGUAGE ACQUISITION
5.4 DEEP LEARNING AND DISTRIBUTIONAL SEMANTICS 1
5.5 SUMMARY AND CONCLUSIONS

Chapter 6 Conclusions and Future Work
6.1 REPRESENTING SYNTACTIC AND SEMANTIC KNOWLEDGE
6.2 DOMAIN SPECIFIC LEARNING BIASES AND LANGUAGE ACQUISITION
6.3 DIRECTIONS FOR FUTURE WORK

REFERENCES

Author Index

Subject Index

Les mer

Produktdetaljer

ISBN
9780367649470
Publisert
2021-04-27
Utgiver
Taylor & Francis Ltd
Vekt
367 gr
Høyde
234 mm
Bredde
156 mm
Aldersnivå
U, P, 05, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
168

Forfatter

Biografisk notat

Shalom Lappin is Professor of Natural Language Processing at Queen Mary University of London, Professor of Computational Linguistics at the University of Gothenburg and Emeritus Professor of Computational Linguistics at King’s College London.