In einem Manuskript aus dem Jahre 1676 behandelt Gottfried Wilhelm Leibniz (1646–1716) die Integration monotoner Funktionen. Hieraus lässt sich eine Integrationstheorie entwickeln, mittels derer man alle in der Schule verwendeten Basisfunktionen integrieren und allgemeine Integrationsregeln herleiten kann. Im Gegensatz zu dem üblichen formalen Zugang benötigt diese Theorie nur einen propädeutischen Grenzwertbegriff, wie er in den KMK-Bildungsstandards gefordert wird; letztlich reicht eine einzige Grenzwertbetrachtung aus. Zudem wird die Integralrechnung nicht auf eine Umkehrung der Differentialrechnung reduziert.

Les mer

In einem Manuskript aus dem Jahre 1676 behandelt Gottfried Wilhelm Leibniz (1646–1716) die Integration monotoner Funktionen. Im Gegensatz zu dem üblichen formalen Zugang benötigt diese Theorie nur einen propädeutischen Grenzwertbegriff, wie er in den KMK-Bildungsstandards gefordert wird;

Les mer

Integrale monotoner Funktionen.- Integration elementarer Funktionen.- Kommentare aus der Sicht der Universitäts- und der Schulmathematik.- Das Manuskript von Leibniz aus dem Jahre 1676 über Infinitesimalrechnung.- Weitere Bestimmungen von Integralfunktionen und Rechenregeln fur die Integration.- Analogie zum Hauptsatz der Differential- und Integralrechnung.

Les mer

In einem Manuskript aus dem Jahre 1676 behandelt Gottfried Wilhelm Leibniz (1646–1716) die Integration monotoner Funktionen. Hieraus lässt sich eine Integrationstheorie entwickeln, mittels derer man alle in der Schule verwendeten Basisfunktionen integrieren und allgemeine Integrationsregeln herleiten kann. Im Gegensatz zu dem üblichen formalen Zugang benötigt diese Theorie nur einen propädeutischen Grenzwertbegriff, wie er in den KMK-Bildungsstandards gefordert wird; letztlich reicht eine einzige Grenzwertbetrachtung aus. Zudem wird die Integralrechnung nicht auf eine Umkehrung der Differentialrechnung reduziert.

Der Inhalt

  • Theorie der Integralrechnung nach Ideen von Gottfried Wilhelm Leibniz (1646–1716)
  • für den unterrichtlichen Zugang zur Integralrechnung ohne Verwendung des Stetigkeitsbegriffs
  • Nutzung eines propädeutischen statt eines formalen Grenzwertbegriffs im Sinne der KMK Bildungsstandards im Fach Mathematik

Die Zielgruppen

  • Lehrkräfte für die Sekundarstufe II mit MINT-Fächern, Schülerinnen und Schüler mit Interesse an Analysis, Studierende für das Lehramt für die Sekundarstufe II mit Mathematik als Fach
  • Alle, die aus der Geschichte der Mathematik Gewinn für die Gegenwart ziehen wollen

Der Autor

Peter Ullrich hat Mathematik und Physik für das Lehramt studiert und an den Universitäten Münster, Gießen, Augsburg und Siegen Positionen in Forschung und Lehre innegehabt, zuletzt als Professor für Mathematik und ihre Didaktik an der Universität Koblenz.

Les mer
Integrationstheorie für alle in der Schule verwendeten Basisfunktionen
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783658320768
Publisert
2025-06-01
Utgiver
Vendor
Springer Spektrum
Høyde
210 mm
Bredde
148 mm
Aldersnivå
Professional/practitioner, P, 06
Språk
Product language
Tysk
Format
Product format
Heftet

Forfatter

Biografisk notat

Peter Ullrich hat Mathematik und Physik für das Lehramt studiert und an den Universitäten Münster, Gießen, Augsburg und Siegen Positionen in Forschung und Lehre innegehabt, zuletzt als Professor für Mathematik und ihre Didaktik an der Universität Koblenz.