Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization.

FEATURES

  • Demonstrates how unsupervised learning approaches can be used for dimensionality reduction
  • Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts
  • Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use
  • Provides use cases, illustrative examples, and visualizations of each algorithm
  • Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis

This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.

Les mer
This book describes algorithms like Locally Linear Embedding, Laplacian eigenmaps, Semidefinite Embedding, t-SNE to resolve the problem of dimensionality reduction in case of non-linear relationships within the data. Underlying mathematical concepts, derivations, proofs, strengths and limitations of these algorithms are discussed as well.
Les mer

Chapter 1 Introduction to Dimensionality Reduction

Chapter 2 Principal Component Analysis (PCA)

Chapter 3 Dual PCA

Chapter 4 Kernel PCA

Chapter 5 Canonical Correlation Analysis (CCA

Chapter 6 Multidimensional Scaling (MDS)

Chapter 7 Isomap

Chapter 8 Random Projections

Chapter 9 Locally Linear Embedding

Chapter 10 Spectral Clustering

Chapter 11 Laplacian Eigenmap

Chapter 12 Maximum Variance Unfolding

Chapter 13 t-Distributed Stochastic Neighbor Embedding (t-SNE

Chapter 14 Comparative Analysis of Dimensionality Reduction

Techniques

Les mer

Produktdetaljer

ISBN
9781032041032
Publisert
2023-09-25
Utgiver
Taylor & Francis Ltd
Vekt
453 gr
Høyde
234 mm
Bredde
156 mm
Aldersnivå
P, 06
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
160

Biografisk notat

B.K. Tripathy, Anveshrithaa Sundareswaran, Shrusti Ghela