Written in a clear, straightforward style, at a level to make it accessible to someone—a mid-level graduate student, say—who wishes to study the material in detail for the first time ... contains exercises ... as well as ... open questions. It brings the reader up to the current 'state of the art' and so will be a valuable resource for the specialist ... would be an excellent basis for a graduate seminar or topics course."" — <em>Mathematical Reviews</em><br /><br />""Material is wonderfully presented, and the book serves as a lovely introduction to the subject. It is written by two authorities in the field, and helps grad students get entry into an exciting, modern, and very active research area."" — Palle Jorgensen
The authors then consider the interpolation problem in the space of bounded analytic functions on the bidisk and give a complete description of the solution. They then consider very general interpolation problems. The book includes developments of all the theory that is needed, including operator model theory, the Arveson extension theorem, and the hereditary functional calculus.
- Prerequisites and notation
- Introduction
- Kernels and function spaces
- Hardy spaces
- $P^2(\mu)$
- Pick redux
- Qualitative properties of the solution of the Pick problem in $H^\infty(\mathbb{D})$
- Characterizing kernels with the complete Pick property
- The universal Pick kernel
- Interpolating sequences
- Model theory I: Isometries
- The bidisk
- The extremal three point problem on $\mathbb{D}^2$
- Collections of kernels
- Model theory II: Function spaces
- Localization
- Schur products
- Parrott's lemma
- Riesz interpolation
- The spectral theorem for normal $m$-tuples
- Bibliography
- Index
Produktdetaljer
Biografisk notat
Jim Agler, University of California at San Diego, CA.John E. McCarthy, Washington University, St. Louis, MO.