Im Mittelpunkt dieses essentials steht eine Einführung in ein bekanntes statistisches Modell, das Hidden-Markov-Modell.Damit können Probleme bewältigt werden, bei denen aus einer Folge von Beobachtungen auf die wahrscheinlichste zustandsspezifische Beschreibung geschlossen werden soll.Die Anwendungen des Hidden-Markov-Modells liegen hauptsächlich in den Bereichen Bioinformatik, Computerlinguistik, maschinelles Lernen und Signalverarbeitung.In diesem Büchlein werden die beiden zentralen Problemstellungen in HMMs behandelt.Das Problem der Inferenz wird mit dem berühmten Viterbi-Algorithmus gelöst, und das Problem der Parameterschätzung wird mit zwei bekannten Methoden angegangen (Erwartungsmaximierung und Baum-Welch).
Les mer
Wahrscheinlichkeitsrechnung.- Vollständig beobachtetes Hidden-Markov-Modell.- Hidden-Markov-Modell.- Historie.
Im Mittelpunkt dieses essentials steht eine Einführung in ein bekanntes statistisches Modell, das Hidden-Markov-Modell. Damit können Probleme bewältigt werden, bei denen aus einer Folge von Beobachtungen auf die wahrscheinlichste zustandsspezifische Beschreibung geschlossen werden soll. Die Anwendungen des Hidden-Markov-Modells liegen hauptsächlich in den Bereichen Bioinformatik, Computerlinguistik, maschinelles Lernen und Signalverarbeitung. In diesem Büchlein werden die beiden zentralen Problemstellungen in HMMs behandelt. Das Problem der Inferenz wird mit dem berühmten Viterbi-Algorithmus gelöst, und das Problem der Parameterschätzung wird mit zwei bekannten Methoden angegangen (Erwartungsmaximierung und Baum-Welch).Der Inhalt
  • Wahrscheinlichkeitsrechnung
  • Hidden-Markov-Modell
  • Inferenz: Viterbi-Algorithmus
  • Parameterschätzung: Algorithmen EM und BW
Die Zielgruppen
  • Studierende der Informatik und Mathematik
  • Lehrkräfte im Bereich Informatik und Mathematik
Der AutorDr. Karl-Heinz Zimmermann studierte Informatik und Mathematik an der Universität Erlangen-Nürnberg. Er promovierte dort in Theoretischer Informatik und habilitierte in Mathematik an der Universität Bayreuth. Er war Fulbright-Stipendiat an der Princeton Universität und Heisenberg-Stipendiat an der Universität Karlsruhe (TH). Er ist seit mehr als 25 Jahren Professor für Informatik an der Technischen Universität Hamburg und Autor von mehreren Forschungsmonographien sowie von über 120 wissenschaftlichen Forschungspublikationen.
Les mer
Stellt das Hidden-Markov-Modell kompakt und übersichtlich dar
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783662659670
Publisert
2022-10-26
Utgiver
Vendor
Springer Spektrum
Høyde
210 mm
Bredde
148 mm
Aldersnivå
Professional/practitioner, P, 06
Språk
Product language
Tysk
Format
Product format
Heftet

Biographical note

Dr. Karl-Heinz Zimmermann studierte Informatik und Mathematik an der Universität Erlangen-Nürnberg. Er promovierte dort in Theoretischer Informatik und habilitierte in Mathematik an der Universität Bayreuth. Er war Fulbright-Stipendiat an der Princeton Universität und Heisenberg-Stipendiat an der Universität Karlsruhe (TH). Er ist seit mehr als 25 Jahren Professor für Informatik an der Technischen Universität Hamburg und Autor von mehreren Forschungsmonographien sowie von über 120 wissenschaftlichen Forschungspublikationen.