mso-fareast-theme-font: minor-latin;">Based on the authors’ research that has been published in leading scientific journals, the book spans a variety of disciplines, including linear and multilinear algebra, generalized inverses, recurrent neural networks, dynamical systems, time-varying problem solving, and unconstrained nonlinear optimization.
Les mer

This book presents a comprehensive exploration of the dynamical system approach in numerical linear algebra, with a special focus on computing generalized inverses, solving systems of linear equations, and addressing linear matrix equations. Bridging four major scientific domains—numerical linear algebra, recurrent neural networks (RNNs), dynamical systems, and unconstrained nonlinear optimization—this book offers a unique, interdisciplinary perspective.

 Generalized Matrix Inversion: A Machine Learning Approach explores the theory and application of recurrent neural networks, particularly continuous-time recurrent neural networks (CTRNNs), which use systems of ordinary differential equations to model the influence of inputs on neurons. Special attention is given to CTRNNs designed for finding zeros of equations or minimizing nonlinear functions, with detailed coverage of two important classes: Gradient Neural Networks (GNN) and Zhang (Zeroing) Neural Networks (ZNN). Both time-varying and time-invariant models are examined across scalar, vector, and matrix cases.

 Based on the authors’ research that has been published in leading scientific journals, the book spans a variety of disciplines, including linear and multilinear algebra, generalized inverses, recurrent neural networks, dynamical systems, time-varying problem solving, and unconstrained nonlinear optimization. Readers will find a global overview of activation functions, rigorous convergence analysis, and innovative improvements in the definition of error functions for GNN and ZNN dynamic systems.

 Generalized Matrix Inversion: A Machine Learning Approach is an essential resource for researchers and practitioners seeking advanced methods at the intersection of machine learning, optimization, and matrix computation.

Les mer
Integrates neural networks and dynamical systems for advanced matrix inversion techniques Covers both time-invariant and time-varying linear algebra problems with practical algorithms Provides rigorous convergence analysis and novel error function improvements for RNN models
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783032014924
Publisert
2026-01-03
Utgiver
Springer Nature Switzerland AG
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet
Antall sider
37