Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods.
Les mer
This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors.
All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical understanding rather than on rigorous mathematical derivations, the content is accessible to graduate students and researchers in the broad areas of materials science and engineering, chemistry, chemical and biomolecular engineering, applied mathematics, condensed-matter physics, without specific training in theoretical physics or calculus of variations.
All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical understanding rather than on rigorous mathematical derivations, the content is accessible to graduate students and researchers in the broad areas of materials science and engineering, chemistry, chemical and biomolecular engineering, applied mathematics, condensed-matter physics, without specific training in theoretical physics or calculus of variations.
Les mer
Provides a unified approach to understanding and quantitative prediction of the properties and rich behavior of diverse many-body systems Offers a balanced mix of physical intuition, mathematical derivations and numerical analysis Illustrated with numerous pedagogical examples and real-world applications Presents valuable alternatives to time-consuming molecular simulations Includes supplementary material: sn.pub/extras
Les mer
Produktdetaljer
ISBN
9789811096327
Publisert
2018-07-07
Utgiver
Springer Verlag, Singapore
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, E, 04
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
12
Redaktør