Most physical phenomena exhibit spatiotemporal features interpreted as wave dynamics. Various diagnostic technologies use some waves such as light, sound, and microwaves. A proper understanding of wave dynamics is essential to interpret these physical phenomena and apply the technology efficiently. However, the physics underlying the wave-like behavior of real-world systems is not necessarily straightforward. Often the mathematical description of these physics is hard to understand. Consequently, the interpretation of diagnostic signals is not simple, which sometimes leads to an incorrect diagnosis. This book aims to solve these problems by describing the related topics on a sound physical basis and explaining them intuitively for easy digestion. Presents real-world examples of oscillatory and wave systems to help the reader understand wave dynamics while explaining numerical methods. Explains the physics and mathematics underlying wave dynamics in intuitive fashions.

Les mer

Most physical phenomena exhibit spatiotemporal features interpreted as wave dynamics. Presents real-world examples of oscillatory and wave systems to help the reader understand wave dynamics while explaining numerical methods.

Les mer
<p>General discussion.- Mathematical.- Oscillation Dynamics.- Wave Dynamics.- Properties of Waves.- Numeric Methods.</p>
Most physical phenomena exhibit spatiotemporal features interpreted as wave dynamics. Various diagnostic technologies use some waves such as light, sound, and microwaves. A proper understanding of wave dynamics is essential to interpret these physical phenomena and apply the technology efficiently. However, the physics underlying the wave-like behavior of real-world systems is not necessarily straightforward. Often the mathematical description of these physics is hard to understand. Consequently, the interpretation of diagnostic signals is not simple, which sometimes leads to an incorrect diagnosis. This book aims to solve these problems by describing the related topics on a sound physical basis and explaining them intuitively for easy digestion. Presents real-world examples of oscillatory and wave systems to help the reader understand wave dynamics while explaining numerical methods. Explains the physics and mathematics underlying wave dynamics in intuitive fashions.
Les mer
This book discusses fundamental physical and mathematical concepts underlying wave dynamics Presents mathematical tools often used to describe oscillation and wave dynamics emphasizing the frequency domain analysis Includes numerical methods we can use for various engineering problems of oscillation and wave dynamics
Les mer
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783031603532
Publisert
2024-08-13
Utgiver
Vendor
Springer International Publishing AG
Høyde
240 mm
Bredde
168 mm
Aldersnivå
Professional/practitioner, P, 06
Språk
Product language
Engelsk
Format
Product format
Innbundet

Forfatter

Biografisk notat

Sanichiro Yoshida received his undergraduate and graduate degrees from Keio University, Japan, in 1980 and 1986, respectively. From 1981 - to 1982, he worked for Dr. Author V. Phelps at the University of Colorado at Boulder as a student researcher, where he learned the basics of conducting scientific research. He has conducted experimental and theoretical research on various topics, such as developments and applications of high-power lasers, precise measurement with optical interferometry, optical and acoustic characterization of material strength, and development of a comprehensive theory on deformation and fracture of solids. Currently, he works at Southeastern Louisiana University as a Professor of Physics.