What happens in our brain when we make a decision? What triggers a neuron to send out a signal? What is the neural code? This textbook for advanced undergraduate and beginning graduate students provides a thorough and up-to-date introduction to the fields of computational and theoretical neuroscience. It covers classical topics, including the Hodgkin-Huxley equations and Hopfield model, as well as modern developments in the field such as generalized linear models and decision theory. Concepts are introduced using clear step-by-step explanations suitable for readers with only a basic knowledge of differential equations and probabilities, and are richly illustrated by figures and worked-out examples. End-of-chapter summaries and classroom-tested exercises make the book ideal for courses or for self-study. The authors also give pointers to the literature and an extensive bibliography, which will prove invaluable to readers interested in further study.
Les mer
Exploring neuron models, the neural code, decision making and learning, this textbook provides a thorough and up-to-date introduction to computational neuroscience for advanced undergraduate and beginning graduate students. With step-by-step explanations, end-of-chapter summaries and classroom-tested exercises, it is ideal for courses or for self-study.
Les mer
Preface; Part I. Foundations of Neuronal Dynamics: 1. Introduction; 2. The Hodgkin-Huxley model; 3. Dendrites and synapses; 4. Dimensionality reduction and phase plane analysis; Part II. Generalized Integrate-and-Fire Neurons: 5. Nonlinear integrate-and-fire models; 6. Adaptation and firing patterns; 7. Variability of spike trains and neural codes; 8. Noisy input models: barrage of spike arrivals; 9. Noisy output: escape rate and soft threshold; 10. Estimating models; 11. Encoding and decoding with stochastic neuron models; Part III. Networks of Neurons and Population Activity: 12. Neuronal populations; 13. Continuity equation and the Fokker-Planck approach; 14. The integral-equation approach; 15. Fast transients and rate models; Part IV. Dynamics of Cognition: 16. Competing populations and decision making; 17. Memory and attractor dynamics; 18. Cortical field models for perception; 19. Synaptic plasticity and learning; 20. Outlook: dynamics in plastic networks; Bibliography; Index.
Les mer
This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.
Produktdetaljer
ISBN
9781107635197
Publisert
2014-07-24
Utgiver
Vendor
Cambridge University Press
Vekt
1150 gr
Høyde
246 mm
Bredde
174 mm
Dybde
26 mm
Aldersnivå
06, P
Språk
Product language
Engelsk
Format
Product format
Heftet
Antall sider
578