<p>"Professor Arnold has expanded his classic book to include new material on exponential growth, predator-prey, the pendulum, impulse response, symmetry groups and group actions, perturbation and bifurcation … . The new edition is highly recommended as a general reference for the essential theory of ordinary differential equations and as a textbook for an introductory course for serious undergraduate or graduate students. … In the US system, it is an excellent text for an introductory graduate course." (Carmen Chicone, SIAM Review, Vol. 49 (2), 2007)</p>

<p>"Vladimir Arnold’s is a master, not just of the technical realm of differential equations but of pedagogy and exposition as well. … The writing throughout is crisp and clear. … Arnold’s says that the book is based on a year-long sequence of lectures for second-year mathematics majors in Moscow. In the U.S., this material is probably most appropriate for advanced undergraduates or first-year graduate students." (William J. Satzer, MathDL, August, 2007)</p>

The first two chapters of this book have been thoroughly revised and sig­ nificantly expanded. Sections have been added on elementary methods of in­ tegration (on homogeneous and inhomogeneous first-order linear equations and on homogeneous and quasi-homogeneous equations), on first-order linear and quasi-linear partial differential equations, on equations not solved for the derivative, and on Sturm's theorems on the zeros of second-order linear equa­ tions. Thus the new edition contains all the questions of the current syllabus in the theory of ordinary differential equations. In discussing special devices for integration the author has tried through­ out to lay bare the geometric essence of the methods being studied and to show how these methods work in applications, especially in mechanics. Thus to solve an inhomogeneous linear equation we introduce the delta-function and calculate the retarded Green's function; quasi-homogeneous equations lead to the theory of similarity and the law of universal gravitation, while the theorem on differentiability of the solution with respect to the initial conditions leads to the study of the relative motion of celestial bodies in neighboring orbits. The author has permitted himself to include some historical digressions in this preface. Differential equations were invented by Newton (1642-1727).
Les mer
Emphasises on the qualitative and geometric properties of Ordinary Differential Equations (ODEs) and their solutions. This book includes material on exponential growth, predator-prey, the pendulum, impulse response, symmetry groups and group actions, perturbation and bifurcation.
Les mer
Basic Concepts.- Basic Theorems.- Linear Systems.- Proofs of the Main Theorems.- Differential Equations on Manifolds.
From the reviews: "... This book is an excellent text for a course whose goal is a mathematical treatment of differential equations and the related physical systems." L'Enseignment Mathematique "... Arnold's book is unique as a sophisticated but accessible introduction to the modern theory, and we should be grateful that it exists in a convenient language." Mathematical Association of America Monthly
Les mer
Furthers the understanding of ODEs by using a geometrical interpretation Excellent for physics students, too One of the best textbooks of all times
GPSR Compliance The European Union's (EU) General Product Safety Regulation (GPSR) is a set of rules that requires consumer products to be safe and our obligations to ensure this. If you have any concerns about our products you can contact us on ProductSafety@springernature.com. In case Publisher is established outside the EU, the EU authorized representative is: Springer Nature Customer Service Center GmbH Europaplatz 3 69115 Heidelberg, Germany ProductSafety@springernature.com
Les mer

Produktdetaljer

ISBN
9783540345633
Publisert
2006-06-19
Utgiver
Vendor
Springer-Verlag Berlin and Heidelberg GmbH & Co. K
Høyde
235 mm
Bredde
155 mm
Aldersnivå
Graduate, UU, 05
Språk
Product language
Engelsk
Format
Product format
Heftet

Forfatter
Oversetter